Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates
نویسندگان
چکیده
منابع مشابه
Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates.
Metal films perforated by nanoholes constitute a powerful platform for surface plasmon resonance biosensing. We find that the refractive index sensitivity of nanohole arrays increases if their resonance is red-shifted by increasing the separation distance between holes. However, an additional sensitivity enhancement occurs if the nanohole sensors are manufactured on low index substrates, despit...
متن کاملNoise in refractive index enhancement
By utilizing the interference between an absorptive resonance and an amplifying resonance, one can achieve an enhanced refractive index without an increase in absorption to the beam. We analyze noise added to the beam due to spontaneous emission while propagating through such an index enhanced medium. We find that, for a medium with a refractive index of n and of length L, n−1 2 / 0 L noise pho...
متن کاملUniversal scaling of plasmonic refractive index sensors.
We establish experimental and numerical evidence that the refractive index sensitivities of various subwavelength plasmonic sensors obey a simple universal scaling relation that the sensitivities linearly increase with λm/neff (where λm is the resonant wavelengths and neff is the effective refractive index of the environment) and exhibit a slope equal to 1 instead of 2 predicted theoretically. ...
متن کاملMicrostrip Antenna Gain Enhancement using Near Zero Refractive Index Metamaterials
Some useful features of microstrip patch antennas are low profile, low weight and easy fabrication. However this type of antenna suffers from having a low gain, caused by propagation surface waves. In this paper, a new near zero refractive index metamaterial (MTM) unit cell is designed and fabricated as a superstrate over a Rectangular Microstrip Patch Antennas (RMPA). In order to obtain a maxi...
متن کاملMultimode interference tapered fiber refractive index sensors.
Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference am...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2009
ISSN: 1094-4087
DOI: 10.1364/oe.17.002015